On sparse estimation for semiparametric linear transformation models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On sparse estimation for semiparametric linear transformation models

Semiparametric linear transformation models have received much attention due to its high flexibility in modeling survival data. A useful estimating equation procedure was recently proposed by Chen et al. (2002) for linear transformation models to jointly estimate parametric and nonparametric terms. They showed that this procedure can yield a consistent and robust estimator. However, the problem...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

Heteroscedastic semiparametric transformation models: estimation and testing for validity

In this paper we consider a heteroscedastic transformation model of the form Λθ(Y ) = m(X) + σ(X)ε, where Λθ belongs to a parametric family of monotone transformations, m(·) and σ(·) are unknown but smooth functions, ε is independent of the d-dimensional vector of covariates X, E(ε) = 0 and Var(ε) = 0. In this model, we first consider the estimation of the unknown components of the model, namel...

متن کامل

Efficient estimation of semiparametric transformation models for counting processes

A class of semiparametric transformation models is proposed to characterise the effects of possibly time-varying covariates on the intensity functions of counting processes. The class includes the proportional intensity model and linear transformation models as special cases. Nonparametric maximum likelihood estimators are developed for the regression parameters and cumulative intensity functio...

متن کامل

On Estimation of Partially Linear Transformation Models.

We study a general class of partially linear transformation models, which extend linear transformation models by incorporating nonlinear covariate effects in survival data analysis. A new martingale-based estimating equation approach, consisting of both global and kernel-weighted local estimation equations, is developed for estimating the parametric and nonparametric covariate effects in a unif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2010

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2010.01.015